

Oil & gas (2): Flow assurance

Typical O&G Application Areas requiring CFD/cmfd

Production Drilling Equipment, Reservoir Design/Fluid Modelling Choke/ICD/Gas Lift Valve **Cuttings Transportation O&G** Key Areas Process/Facilities Flow Assurance Slugging, Hydrates Platform Design Equipment/Component Wax, Asphaltene, Black Powder Pumps/Turbine Erosion, Sand & Scale Deposition

2- Flow Assurance

The Challenges:

 Companies face several production challenges in designing and operating long multiphase flow pipeline systems.

Typical consequences:

- Interrupted production (due o solids deposition & subsequent blockage formations in pipelines)
- Risk of accidents & asset damages
- If unmanaged, high costs threaten company's profits and legal issues.

Benefits of using CFD/CMFD:

- Understand better production systems
- Ability to predict its behavior and prevent flow assurance issues.

Mal-distribution of phases in manifolds

- Uneven Split "Mal-Distribution" In manifolds causing equipment's performance unbalance.
- Phase distribution and solids transport control Carry-Over & Carry-Under.

Why CMFD?

- Can simulate flow patterns and phase distributions in manifolds and splits
- Help understand solid particle preferential concentration and distribution in the conduits.

Black powder in gas pipelines

DNV·GL

 Black powder causes blockage of gas pipelines, interrupting the flow assurance, and may lead to accidental releases of toxic materials in the atmosphere.

Why CMFD?

- Simulate flow details, including critical/threshold flow velocity for powder build up and removal,
- Intervene where simplified 1D models fail to predict,
- Help prevent costly production disruptions with black powder slugging & pipe blocking.

Subsea oil blow out

 A subsea oil spill can cause irreversible environmental damages, with high costs (\$ billions) and litigation issues.

Why CMFD?

- Lesson learnt from BP spill >
 efforts to create a safety passive
 containment system
- Understand the complex subsea flow behaviour near spill
- Screen simple passive safety containment systems
- Optimize the design (incl. chem. Inhibitors injection) and robot deployment of containment.

Capping the Macondo well

Hydrate Plugging of an under-design dome

Loss of buoyancy under floating platforms

