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Flow in Steam Generators: Fluent grid
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• Courtesy: NRC (Chris Boyd, FLUENT)



Flow in Steam Generators: TransAT grid
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• ASCOMP (TransAT)



Fluent & TransAT solutions
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• ASCOMP (TransAT)

• NRC (Fluent)



Boron mixing in PWR primary circuit
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— Primary circuit of a PWR

 

Steam Generator 

Pressurizer 

RPV 

Main Coolant 

Pump 

Deborated/overcooled water 

• PWR is equipped with 2 or 

more loops (German 

KONVOI: 4)

• Boron dissolved in the 

coolant acts as neutron 

absorber

• Hypothetical accidents with 

creation of lower borated 

slugs in single loops

• Importance of mixing of 

coolant with different boron 

content

ROCOM tests (SIEMENS Germany)



Boron dilution: 1D-3D Coupling (Cathare-transat)
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• The flow is simulated with TransAT. 

• The fluid domain is shown in blue -

everything else is solid (“inverted” view).

• IST mesh is created by using multiple 

blocks with a total of 700k cells.

• The inlet boundaries, indicated by green 

surfaces, have velocity = 2.91m/s

• The outlet/coupling boundary is 

indicated by a red surface, with no 

prescribed conditions.



Boron dilution: 1D-3D Coupling  (cathare-transat)
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• Planes are perpendicular to the Y direction

• Fluid goes deep into the lower plenum, and then rises up through the 

support plate.

• Sharp interface is implemented, which creates gaps between adjacent 

objects. The unexpected gaps in the lower plenum will affect the fluid field.



Boron dilution: 1D-3D Coupling (cathare-transat)
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• With a larger time step, there 

are no significant pressure 

oscillations in CATHARE.

• At the coupling interface, 

pressure values from both 

sides match well.

• The maximum mixing scalar is 

very well captured by the coupled 

solution.

• The concentration spreading is 

only slightly underestimated 

compared to the data.



Droplet entrainment: The practical context
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Courtesy: Badie & Hewitt © Imperial College London

Wetting mechanismAir-water flow



LEIS of droplet entrainment in a pipe

July 2019 AFRY PRESENTATION10



Free-surface horizontal flows
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Vertical Flow: The Issues
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— Flow regime map definition (e.g. slug 

speeds & size, etc.)

— Phase distribution

— Pressure drop and thermal transients

— Large diameter risers.

Why CMFD?

— Can simulate various flow regimes.

— Advanced models (ITM) are needed for 

certain flow patterns (e.g. slugging), 

and

— Can help identify flow regimes for 

large-diameter risers, as

— Shown in examples of next slide.



Flow Regime Prediction
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Annular Flow (full domain) 
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• Jg = 20 m/s, Jl = 1.5 m/s. Comp.  domain 

spans one full wavelength

• LEIS: Total number of grid points is 10 

million cells distributed over 960 cores.  

• Ligament formation, droplet detachment, 

formation of large disturbance wave 

clearly visible in these simulations

• Flow for full domain still developing.



Condensation of steam jets from a sparger in a pool 
(KEPCO Korea) 
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Condensation of steam jets from a sparger in a pool 
(KEPCO Korea) 
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RPV de-pressurisation
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PTS: COSI Exp. (AREVA)
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HP injection

Zone A

recirculation
Zone B

high

turbulent

mixing

Zone C

thermal

stratification

weir

"downcomer"

cold leg
steam

suplly

"break"

• During a hypothetical SB-LOCA, cold water is injected into the cold leg to 

limit the RPV lifetime (Emergency Core Cooling, ECC). 

• The injected water mixes with the hot fluid in the cold leg and flows towards 

the downcomer leading to excessive thermal stresses on the RPV walls. 

• Courtesy from Yadigaroglu and Bestion, ICAPP07



Rate of condensation
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• ECC injection of cold water (296 K) in saturated water

• Steam at saturation temperature (485 K) 

• Pressure 20 bars

• Simulation with TransAT level-set technique

• RANS vs. V-LES models for turbulence

• Interfacial condensation model (Labois & Lakehal, 2010)



Cross-section interface & temperature
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Temperature average results
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The OECD PSBT 5x5 Benchmark 20
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DEBORA EXPERIMENTS OF MANON ET AL (2000, 2001) 

Bubbly-flow boiling: Debora test case (CEA)
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Pipe Length: 5m

Pipe Diameter: 19.2 mm



Bubbly-flow boiling: Debora test case (CEA)
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• Iso-contours of 

transport 

quantities, 

including liquid 

and vapour

temperature. 

• 2D Axisymmetric 

simulations 

TransAT.

Void Fraction for Case 2 & 3: 

Tin = 58.4 C and 63.4 C

Void Fraction for Case 4 & 5: 

Tin = 67.9 C and 70.14 C

Void Fraction for Case 6 & 7: 

Tin = 72.6 C and 73.7 C



EXPERIMENTS OF LEE, PARK & LEE (2002) AND TU & YEOH 

(2003)

Bubbly-flow boiling: Lee et al. & Tu & Yeoh (KAERI)
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Heat flux mass flux Tinlet Tsat

MW/ m2 kg/m2/s K K

0.1523 474 371.5 383

a

Norm. Radial distance

• Pipe Length: 2.376m

• q=152.3 kW/m2

• Gl=474 kg/(m2s)

• P=0.14 Mpa

• ΔTsub=11.5 K.



NUPEC PWR Test Facility 
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Testcas
e

Pressur
e
[MPa]

Inlet 
Tem
p
[°C]

Powe
r
[kW]

Mass Flux
[kg m-2s-

1]

1.2211 15 295.4 90 11

1.2223 15 319.6 70 11

1.2237 15 329.6 60 11

1.4411 10 238.9 60 5

1.4325 10 253.8 60 2

1.4326 10 268.8 60 5

Cell 
Size (in 
mm)

No. of 
Cells

No. 
of 
Proces
sors

Wall 
Clock Time

(in 
days)

5.31 9216 1 0.33

2.655 73728 8 0.75

1.328 1280000 108 1.5

0.885 2880000 128 4



NUPEC PWR Test Facility 
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• Iso-contours of 

vapour void 

fraction. 

• Calculated vs. 

measured 

space-averaged 

void fraction. 

• Comparison with 

CFX results



LES of Thermal stipping in a T-junction
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• Flow visualization test in the 

Vattenfall T-junction test facility 

(Älvkarleby Labs., Vattenfall R&D).

• Re = 1.9E5; DT= 15 Deg.

• BFC grid (3 million cells)

• LES with WALE SGS model



Instantaneous results
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Time average results (mean & r.m.s variables)
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Vertical profile, L/D=3.6
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Grand-challenge problem



Convective boiling flow in two types of assemblies
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Two assembly types and the

min simulation domain (in red)
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• Bottom nozzle
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Parameter Value

Reactor Power [MWth] 3002

Average Linear Power [W/cm] 235.04

Coolant Inlet Temperature [K] 564.65

Coolant Outlet Average Temperature [K] 599.35

System Pressure [bar] 154

Core mass flow rate [kg/s] 15980

Core volumetric flow rate [m3/s] 21.502

Total core total bypass, mass flow rate [kg/s] 749.46 (=4.69% of core mass flow rate)

Bypass through thimble tubes, m. flow rate 

[kg/s]
263.67 (=1.65% of core mass flow rate)

Quarter average assembly power distribution [W/cm] for both assembly Axial power distribution and fitted shape function
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# Region
Axial Coordinate [mm] Sub. Seg.

[mm]

∆x=

∆y
[mm]

AR
Segment #

∆zseg  [mm]
Cellszstart zend ∆z

1 Domain extention and Bott.  plate -50 385   385   435   0.25 10

1

1170

4.362E+08

2 Bottom nozzle lower part 385 554   604   169   0.25 10

3 Bottom nozzle filter and bottom spacers 554   742   792   188   0.25 1

4 Rods 742   1120   1170   378   0.25 10

5 Guide tube hole 1120   1212   1262   92   0.25 1 2

553

3.366E+08

6 2nd spacers 1212   1306   1356   94 0.25 1

7 Rods  1306   1673   1723   367   0.25 10

8 Rods  1673   1746   1796   73   0.25 10 3

534

2.142E+08

9 3rd Spacers and sleeves 1746   1839   1889   93 0.25 1

10 Rods 1839   2207   2257   368 0.25 10

11 Rods 2207   2280   2330   73 0.25 10 4

533

2.144E+08

12 4th Spacers and sleeves 2280   2373   2423   93 0.25 1

13 Rods 2373   2740   2790   367 0.25 10

14 Rods 2740   2813   2863   73 0.25 10 5

535

2.147E+08

15 5th Spacers and sleeves 2813   2907   2957   94 0.25 1

16 Rods 2907   3275   3325   368 0.25 10

17 Rods 3275   3346   3396   71 0.25 10 6

533

2.144E+08

18 6th Spacers and sleeves 3346   3441   3491   95 0.25 1

19 Rods 3441   3808   3858   367 0.25 10

20 Rods 3808   3879   3929   71 0.25 10 7

527

2.136E+08

21 7th Spacers and  sleeves 3879   3972   4022   93 0.25 1

22 Rods 3972   4335   4385   363 0.25 10

24 Rods 4335   4403 4453   68 0.25 10 8

665

3.329E+08

25 8th Spacers and sleeves 4403   4512   4562   109 0.25 1

26 Region above rods up to guide tubes end plug 4512   4570   4620   58   0.25 1

27 Top nozzle and upper plate 4570   4753   4803   183   0.25 10

28 Upper plate and domain extention 4753   5000   5000   247   0.25 10

Total 5050   - - 2.177E+09

Total fine meshing 859   0.25 1 1.278E+09

Total coarser meshing 4191   0.25 10 8.993E+08
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