

## Flow in Steam Generators: Fluent grid



Courtesy: NRC (Chris Boyd, FLUENT)



## Flow in Steam Generators: TransAT grid



ASCOMP (TransAT)



#### Fluent & TransAT solutions



ASCOMP (TransAT)



## Boron mixing in PWR primary circuit

- PWR is equipped with 2 or more loops (German KONVOI: 4)
- Boron dissolved in the coolant acts as neutron absorber
- Hypothetical accidents with creation of lower borated slugs in single loops
- Importance of mixing of coolant with different boron content



Primary circuit of a PWR

ROCOM tests (SIEMENS Germany)



## Boron dilution: 1D-3D Coupling (Cathare-transat)



- The flow is simulated with TransAT.
- The fluid domain is shown in blue everything else is solid ("inverted" view).
- IST mesh is created by using multiple blocks with a total of 700k cells.



- The inlet boundaries, indicated by green surfaces, have velocity = 2.91m/s
- The outlet/coupling boundary is indicated by a red surface, with no prescribed conditions.



## Boron dilution: 1D-3D Coupling (cathare-transat)



- Planes are perpendicular to the Y direction
- Fluid goes deep into the lower plenum, and then rises up through the support plate.
- Sharp interface is implemented, which creates gaps between adjacent objects. The unexpected gaps in the lower plenum will affect the fluid field.



## Boron dilution: 1D-3D Coupling (cathare-transat)



- With a larger time step, there are no significant pressure oscillations in CATHARE.
- At the coupling interface, pressure values from both sides match well.

- The maximum mixing scalar is very well captured by the coupled solution.
- The concentration spreading is only slightly underestimated compared to the data.



## Droplet entrainment: The practical context

Air-water flow



Wetting mechanism



Courtesy: Badie & Hewitt © Imperial College London



## LEIS of droplet entrainment in a pipe





### Free-surface horizontal flows











#### Vertical Flow: The Issues

- Flow regime map definition (e.g. slug speeds & size, etc.)
- Phase distribution
- Pressure drop and thermal transients
- Large diameter risers.

#### Why CMFD?

- Can simulate various flow regimes.
- Advanced models (ITM) are needed for certain flow patterns (e.g. slugging), and
- Can help identify flow regimes for large-diameter risers, as
- Shown in examples of next slide.





## Flow Regime Prediction





## Annular Flow (full domain)



- $J_g = 20$  m/s,  $J_l = 1.5$  m/s. Comp. domain spans one full wavelength
- LEIS: Total number of grid points is 10 million cells distributed over 960 cores.



- Ligament formation, droplet detachment, formation of large disturbance wave clearly visible in these simulations
- Flow for full domain still developing.



# Condensation of steam jets from a sparger in a pool (KEPCO Korea)



Tangential velocity magnitude
0.003644
1.534903

Figure 1: AP1000 RCS and passive core cooling system (Schulz, 2006)







## Condensation of steam jets from a sparger in a pool (KEPCO Korea)



Image of condensing jet from Song et al. (2012)





## RPV de-pressurisation





## PTS: COSI Exp. (AREVA)



- Courtesy from Yadigaroglu and Bestion, ICAPP07
- During a hypothetical SB-LOCA, cold water is injected into the cold leg to limit the RPV lifetime (Emergency Core Cooling, ECC).
- The injected water mixes with the hot fluid in the cold leg and flows towards the downcomer leading to excessive thermal stresses on the RPV walls.



#### Rate of condensation

- ECC injection of cold water (296 K) in saturated water
- Steam at saturation temperature (485 K)
- Pressure 20 bars
- Simulation with TransAT level-set technique
- RANS vs. V-LES models for turbulence
- Interfacial condensation model (Labois & Lakehal, 2010)







## Cross-section interface & temperature





## Temperature average results





#### The OECD PSBT 5x5 Benchmark 20





## Bubbly-flow boiling: Debora test case (CEA)

DEBORA EXPERIMENTS OF MANON ET AL (2000, 2001)



Pipe Length: 5m

Pipe Diameter: 19.2 mm

| Case | mass<br>flux         | T <sub>inlet</sub> | $T_{\text{sat}}$ | Bubble<br>dia |
|------|----------------------|--------------------|------------------|---------------|
| No.  | kg/m <sup>2</sup> /s | °C                 | °C               | mm            |
| 1    | 1006.8               | 52.97              | 94.136           | 0.2           |
| 2    | 1007.4               | 58.39              | 94.136           | 0.58          |
| 3    | 999.5                | 63.43              | 94.136           | 0.65          |
| 4    | 1005                 | 67.89              | 94.136           | 3.2           |
| 5    | 1004.8               | 70.14              | 94.136           | 4.0           |
| 6    | 1004.8               | 72.65              | 94.136           | 5.1           |
| 7    | 994.9                | 73.7               | 94.136           | 6.2           |



## Bubbly-flow boiling: Debora test case (CEA)





## Bubbly-flow boiling: Lee et al. & Tu & Yeoh (KAERI)

EXPERIMENTS OF LEE, PARK & LEE (2002) AND TU & YEOH (2003)





- Pipe Length: 2.376m
- *q*=152.3 kW/m<sup>2</sup>
- $G_{\parallel}$ =474 kg/(m<sup>2</sup>s)
- *P*=0.14 Mpa
- $\Delta T_{sub} = 11.5 \text{ K}.$

| Heat flux | mass flux | <b>T</b> inlet | T <sub>sat</sub> |
|-----------|-----------|----------------|------------------|
| MW/ m²    | kg/m²/s   | K              | K                |
| 0.1523    | 474       | 371.5          | 383              |



## NUPEC PWR Test Facility



| Testcas<br>e | Pressur<br>e<br>[MPa] | Inlet<br>Tem<br>p<br>[°C] | Powe<br>r<br>[kW] | Mass Flux<br>[kg m <sup>-2</sup> s <sup>-</sup> |
|--------------|-----------------------|---------------------------|-------------------|-------------------------------------------------|
| 1.2211       | 15                    | 295.4                     | 90                | 11                                              |
| 1.2223       | 15                    | 319.6                     | 70                | 11                                              |
| 1.2237       | 15                    | 329.6                     | 60                | 11                                              |
| 1.4411       | 10                    | 238.9                     | 60                | 5                                               |
| 1.4325       | 10                    | 253.8                     | 60                | 2                                               |
| 1.4326       | 10                    | 268.8                     | 60                | 5                                               |
| Cell         | No o                  | f                         | No                | Wall                                            |

(Alumina)

| Cell<br>Size (in<br>mm) | No. of<br>Cells | No.<br>of<br>Proces<br>sors | Wall<br>Clock Time<br>(in<br>days) |
|-------------------------|-----------------|-----------------------------|------------------------------------|
| 5.31                    | 9216            | 1                           | 0.33                               |
| 2.655                   | 73728           | 8                           | 0.75                               |
| 1.328                   | 1280000         | 108                         | 1.5                                |
| 0.885                   | 2880000         | 128                         | 4                                  |



## NUPEC PWR Test Facility

- Iso-contours of vapour void fraction.
- Calculated vs. measured space-averaged void fraction.
- Comparison with CFX results







## LES of Thermal stipping in a T-junction

- Flow visualization test in the Vattenfall T-junction test facility (Älvkarleby Labs., Vattenfall R&D).
- Re = 1.9E5;  $\Delta T$ = 15 Deg.
- BFC grid (3 million cells)
- LES with WALE SGS model







#### Instantaneous results





## Time average results (mean & r.m.s variables)





# Grand-challenge problem



## Convective boiling flow in two types of assemblies





Two assembly types and the min simulation domain (in red)













#### Bottom nozzle





| Parameter                                         | Value                                  |
|---------------------------------------------------|----------------------------------------|
| Reactor Power [MWth]                              | 3002                                   |
| Average Linear Power [W/cm]                       | 235.04                                 |
| Coolant Inlet Temperature [K]                     | 564.65                                 |
| Coolant Outlet Average Temperature [K]            | 599.35                                 |
| System Pressure [bar]                             | 154                                    |
| Core mass flow rate [kg/s]                        | 15980                                  |
| Core volumetric flow rate [m³/s]                  | 21.502                                 |
| Total core total bypass, mass flow rate [kg/s]    | 749.46 (=4.69% of core mass flow rate) |
| Bypass through thimble tubes, m. flow rate [kg/s] | 263.67 (=1.65% of core mass flow rate) |

| 367,1 | 371,4 | 395,9 | 0,0   | 403,4  | 382,5 | 373,6 | 376,6 |  |  |
|-------|-------|-------|-------|--------|-------|-------|-------|--|--|
| 371,4 | 378,1 | 389,9 | 411,5 | 402,6  | 406,6 | 384,3 | 379,2 |  |  |
| 395,9 | 389,9 | 396,3 | 417,5 | 422,8  | 0,0   | 403,6 | 383,5 |  |  |
| 0,0   | 411,5 | 417,5 | 0,0   | 423,7  | 414,3 | 389,5 | 382,8 |  |  |
| 403,4 | 402,6 | 422,8 | 423,7 | 404,2  | 408,6 | 385,5 | 379,2 |  |  |
| 382,5 | 406,6 | 0,0   | 414,3 | 408,6  | 0,0   | 392,6 | 374,0 |  |  |
| 373,6 | 384,3 | 403,6 | 389,5 | 385,5  | 392,6 | 368,1 | 364,9 |  |  |
| 373,6 | 379,2 | 383,5 | 382,8 | 379,2  | 374,0 | 364,9 | 358,7 |  |  |
|       |       |       |       |        |       |       |       |  |  |
| 8     | 7     | 6     | 5     | 4      | 3     | 2     | 1     |  |  |
|       |       |       | Assen | nbly A |       |       |       |  |  |

| 376,6 | 373,6 | 382,5 | 403,4 | 0,0   | 395,9 | 371,4 | 367,1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 379,2 | 384,3 | 406,6 | 402,6 | 411,5 | 389,9 | 378,1 | 371,4 |
| 383,5 | 403,6 | 0,0   | 422,8 | 417,5 | 396,3 | 389,9 | 395,9 |
| 382,8 | 389,5 | 414,3 | 423,7 | 0,0   | 417,5 | 411,5 | 0,0   |
| 379,2 | 385,5 | 408,6 | 404,2 | 423,7 | 422,8 | 402,6 | 403,4 |
| 374,0 | 392,6 | 0,0   | 408,6 | 414,3 | 0,0   | 406,6 | 382,5 |
| 364,9 | 368,1 | 392,6 | 385,5 | 389,5 | 403,6 | 384,3 | 373,6 |
| 358,7 | 364,9 | 374,0 | 379,2 | 382,8 | 383,5 | 379,2 | 373,6 |
|       |       |       |       |       |       |       |       |
| 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
|       |       |       |       |       |       |       |       |



Assembly A

Quarter average assembly power distribution [W/cm] for both assembly

Axial power distribution and fitted shape function



|                                              | Axial Coordinate [mm] |                  |           |      |      | AR |                   |
|----------------------------------------------|-----------------------|------------------|-----------|------|------|----|-------------------|
|                                              | Z <sub>start</sub>    | Z <sub>end</sub> | Δz        | [mm] |      |    |                   |
| Domain extention and Bott. plate             | -50                   | 385              | 385       | 435  | 0.25 | 10 |                   |
| Bottom nozzle lower part                     | 385                   | 554              | 604       | 169  | 0.25 | 10 | 1                 |
| Bottom nozzle filter and bottom spacers      | 554                   | 742              | 792       | 188  | 0.25 | 1  | 4.470             |
| Rods                                         | 742                   | 1120             | 1170      | 378  | 0.25 | 10 | 1170<br>4.362E+08 |
| Guide tube hole                              | 1120                  | 1212             | 1262      | 92   | 0.25 | 1  | 2                 |
| 2 <sup>nd</sup> spacers                      | 1212                  | 1306             | 1356      | 94   | 0.25 | 1  | _                 |
| Rods                                         | 1306                  | 1673             | 1723      | 367  | 0.25 | 10 | 553<br>3.366E+08  |
| Rods                                         | 1673                  | 1746             | 1796      | 73   | 0.25 | 10 | 3                 |
| 3 <sup>rd</sup> Spacers and sleeves          | 1746                  | 1839             | 1889      | 93   | 0.25 | 1  | Ŭ                 |
| Rods                                         | 1839                  | 2207             | 2257      | 368  | 0.25 | 10 | 534<br>2.142E+08  |
| Rods                                         | 2207                  | 2280             | 2330      | 73   | 0.25 | 10 | 4                 |
| 4 <sup>th</sup> Spacers and sleeves          | 2280                  | 2373             | 2423      | 93   | 0.25 | 1  | 7                 |
| Rods                                         | 2373                  | 2740             | 2790      | 367  | 0.25 | 10 | 533<br>2.144E+08  |
| Rods                                         | 2740                  | 2813             | 2863      | 73   | 0.25 | 10 | 5                 |
| 5 <sup>th</sup> Spacers and sleeves          | 2813                  | 2907             | 2957      | 94   | 0.25 | 1  |                   |
| Rods                                         | 2907                  | 3275             | 3325      | 368  | 0.25 | 10 | 535<br>2.147E+08  |
| Rods                                         | 3275                  | 3346             | 3396      | 71   | 0.25 | 10 | 6                 |
| 6th Spacers and sleeves                      | 3346                  | 3441             | 3491      | 95   | 0.25 | 1  |                   |
| Rods                                         | 3441                  | 3808             | 3858      | 367  | 0.25 | 10 | 533<br>2.144E+08  |
| Rods                                         | 3808                  | 3879             | 3929      | 71   | 0.25 | 10 | 7                 |
| 7 <sup>th</sup> Spacers and sleeves          | 3879                  | 3972             | 4022      | 93   | 0.25 | 1  | ·                 |
| Rods                                         | 3972                  | 4335             | 4385      | 363  | 0.25 | 10 | 527<br>2.136E+08  |
| Rods                                         | 4335                  | 4403             | 4453      | 68   | 0.25 | 10 | 8                 |
| 8 <sup>th</sup> Spacers and sleeves          | 4403                  | 4512             | 4562      | 109  | 0.25 | 1  | J                 |
| Region above rods up to guide tubes end plug | 4512                  | 4570             | 4620      | 58   | 0.25 | 1  | 665               |
| Top nozzle and upper plate                   | 4570                  | 4753             | 4803      | 183  | 0.25 | 10 |                   |
| Upper plate and domain extention             | 4753                  | 5000             | 5000      | 247  | 0.25 | 10 | 3.329E+08         |
|                                              |                       |                  | Total     | 5050 | -    | -  | 2.177E+09         |
|                                              |                       | Total fin        | e meshing | 859  | 0.25 | 1  | 1.278E+09         |
|                                              |                       |                  |           | 4191 | 0.25 | 10 | 8.993E+08         |

















