

System-scale simulation of continuous Digester

DDIG-SIM

 A dynamic system-scale simulation tool to assist mill operations in improving digester runnability and reducing kappa variability

Physics-based modelling DDIG-Sim©

- System code dedicated to simulation of pulp cooking processes using first principles
- Consists of mass balances for the nonporous solid (wood chips) and free liquor components
- Accounts for energy transfer between the phases within the reactor
- DDIG-Sim© can be deployed under Windows, and runs under Matlab
- Tailored versions for other simulation tools, e.g. Python
- DDIG-Sim© can be adopted to various types of continuous digesters with different input, circulation and extraction configurations

- Predicts at all digester locations:
 - Kappa number
 - Concentrations of main wood constituents
 - Concentrations of main liquor components
 - Temperature
 - Chip and liquor flow velocities

- Simulates impacts of changes in:
 - Production rate
 - Alkali charge
 - Chip mix
 - Cooking temperature
- Supports mill operations in reducing kappa and residual alkali variations
- Predicts hanging or plugging of digester

Use case: compact cooking g1 digester

- Flows and cooking variables simulated for Compact Cooking G1 digester
- The plant is located in Finland
- Simulation can be executed for various parameters (e.g. changing cooking temperature, amount of wood, production changes, etc.)

S PÖYRY	DKD Project		
5.3.2019 P. Varhimo	Continuous cooking plant		
	REVISED 27/1/2020 5:44 PM		

Use case: compact cooking g1 digester

Use case: compact cooking g1 digester

Results: kappa after change (+10%) in production rate and WL charge;
comparison of system simulation with field data

Parameter	Plant Measureme nt	Model Output	Model Accuracy
Blow-line Kappa number	28.97	28.12	97%
Cook Zone out Extraction screen RA	21.54	26.15	83%
MCC out Extraction screen RA	12.99	9.82	76%

