

REACTIVE FLOWS

July 2019 www.poyry.com/ams; ams@poyry.com

Catalytic Wall Reaction →

EXAMPLE 1: FINITE RATE SURFACE REACTION IN TUBE

(MLADENOV ET AL., 2000)

Mass flow averaged gas phase species in a channel. Comparison to the reference results of Miadenov et al.

Surface absorbed species in a channel. Comparison to the reference case of Mladenov et al.

- Flow in a tube Re = 201
- Fixed wall temperature 523 K
- Inlet: Typical exhaust gas of an engine
 - N2, O2, CO2 & H2O
 - Traces of C3H6
 - CO, NO, NO2
- Reactions on the tube surface
- Main pathways:
 - C3H6 oxidation
 - CO oxidation
 - Reactions involving NO and NO2

EXAMPLE 2: CATALYTIC WALL REACTION IN A CHANNEL

(RAJA ET AL., 2000)

Mass fraction of major species

- 2D channel (0.2cm; 10cm)
 Methane-Air mixture wallreacting (heterogeneous) flow
- Re=200 (1 bar) & 2000 (10 bar); compressible flow
- U = 5m/s; T = 600K; Tw=600-1290K : x < 0.1cm;
- 8 gas-phase species & 11 surfaces species
- Use Cantera library to extract material properties

EXAMPLE 2: CATALYTIC WALL REACTION IN A CHANNEL

(RAJA ET AL., 2000)

Surface coverage and surface species mass fractions

EXAMPLE 3: CATALYTIC WALL REACTION IN A DUCT (GHERMAY ET AL., 2010)

- A square duct (section: 0.7cm; 30cm) with Hydrogen-Air mixture wall-reaction
- Using Benzene reaction chemistry
- Walls coated with platinum
- U = 9.6m/s; T = 572K; Tw=1150 K: x < 0.1cm
- 7 gas-phase species & 5 surfaces species
- Use Cantera library to extract material properties

(GHERMAY ET AL., 2010)

(GHERMAY ET AL., 2010): 2D RESULTS

(GHERMAY ET AL., 2010): 3D RESULTS

(GHERMAY ET AL., 2010): 3D RESULTS

3D SIMULATIONS OF FLOW/CATALYTIC REACTION IN COMPLEX KELVIN-CELLS STRUCTURES

- A Kelvin cell with Hydrocarbons-Air-CO mixture wall-reaction
- Walls coated with platinum
- U = 10 m/s; T = 1000K
- Infinite fast reaction
- Heat release (exothermal reaction combined with conjugate heat transfer)

(catalytic Reactors for gas exhaust in cars: EMPA, Switzerland)

3D SIMULATIONS OF FLOW/CATALYTIC REACTION IN COMPLEX KELVIN-CELLS STRUCTURES

3D SIMULATIONS OF FLOW/CATALYTIC REACTION IN COMPLEX KELVIN-CELLS STRUCTURES

- Auto-generated BMR grid
- Pollutant conversion
- Multi-step reaction mechanism
- Conjugate heat transfer
- Heat release due to the reaction

3D SIMULATIONS OF FLOW/CATALYTIC REACTION IN COMPLEX KELVIN-CELLS STRUCTURES

- catalytic reaction on the kelvin-cell walls, with conjugate heat transfer.
- Use is the made of the IST to mesh. the cells, on a Cartesian grid

2D SIMULATIONS OF FLOW/CATALYTIC REACTION IN A CHANNEL WITH WASHCOAT

- Catalytic combustion of Methane in a thermally isolated channel
- Multi-step reaction mechanism
- Species diffusion and reaction in the washcoat
- Conduction in the washcoat
- Conjugate heat transfer

2D SIMULATIONS OF FLOW/CATALYTIC REACTION IN A CHANNEL WITH WASHCOAT

- Channel case of Mladenov et al. with washcoat model
- Multistep reaction mechanism (~ 80 reactions)

Homogeneous Combustion→

EXAMPLE 1: NO2 FORMATION (ARHENIUS APPROACH)(FEITELBERG & COREA, 2000)

- Exhaust gas from gas turbine
- Create a plug flow reactor (1D)
- Apply NO2 formation mechanism
- Use Arrhenius model
- Use Cantera library

		Forward rate parameters		
	REACTION	Α	ь	E
1.	CO + O + M = CO ₂ + M	6.17×10 ¹⁴	0.00	3000.
2.	$CO + OH = CO_2 + H$	1.51×10^{07}	1.30	-758.
3.	$CO + O_2 = CO_2 + O$	1.60×10^{13}	0.00	41000.
4.	$HO_2 + CO = CO_2 + OH$	5.80×10^{13}	0.00	22934.
5.	$H_2 + O_2 = 2 \text{ OH}$	1.70×10^{13}	0.00	47780.
6.	$H + H_2 = H_2O + H$	1.17×10^{09}	1.30	3626.
7.	$O + OH = O_2 + H$	4.00×10^{14}	-0.50	0.
8.	$O + H_2 = OH + H$	5.06×10^{04}	2.67	6290.
9.	$H + O_2 + M = HO_2 + M$	3.61×10^{17}	-0.72	0.
	Enhanced third-body efficiencies:	$H_2O = 18.6$, $CO_2 = 4.2$, H_3	= 2.9, CO = 2.1, f	$N_2 = 1.3$
10.	$OH + HO_2 = H_2O + O_2$	7.50 × 10 ¹²	0.00	0.
11.	$H + HO_2 = 2 OH$	1.40×10^{14}	0.00	1073.
12.	$O + HO_2 = O_2 + OH$	1.40×10^{13}	0.00	1073.
13.	2 OH = O + H ₂ O	6.00 × 10 ⁰⁸	1.30	0.
14.	$H + H + M = H_2 + M$	1.00×10^{18}	-1.00	0.
	Enhanced third-body efficiencies:	H ₂ = 0.0, H ₂ O = 0.0, CO ₂	= 0.0	
15.	$H + OH + M = H_2O + M$	1.60 × 10 ²²	-2.00	0.
	Enhanced third-body efficiencies:	$H_2O = 5.0$		
16.	$O + O + M = O_2 + M$	1.89 × 1013	0.00	-1788.
17.	$H + HO_2 = H_2 + O_2$	1.25×10^{13}	0.00	0.
18.	$2 HO_2 = H_2O_2 + O_2$	2.00 × 10 ¹²	0.00	0.
19.	$H_2O_2 + M = 2 OH + M$	1.30×10^{17}	0.00	45500.
20.	$H_2O_2 + H = HO_2 + H_2$	1.60 × 10 ¹²	0.00	3800.
21.	$H_2O_2 + OH = H_2O + H$	1.00 × 10 ¹³	0.00	1800.
22.	$CO_2 + N = NO + CO$	1.90 × 10 ¹¹	0.00	3400.
23.	$HO_2 + NO = NO_2 + OH$	2.11 × 1012	0.00	-479.
24.	$NO_2 + H = NO + OH$	3.50×10^{14}	0.00	1500.
25.	$NO_2 + O = NO + O_2$	1.00 × 10 ¹³	0.00	600.
26.	$NO_2 + M = NO + O + M$	1.10 × 1016	0.00	66000.
27.	$N_2O + H = N_2 + OH$	7.60×10^{13}	0.00	15200.
28.	$N_2O + M = N_2 + O + M$	1.60 × 1014	0.00	51600.
29.	$N_2O + O = N_2 + O$	1.00 × 1014	0.00	28200.
30.		1.00 × 1014	0.00	28200.
31.		3.27 × 1012	0.30	0.
32.		6.40 × 10 ⁰⁹	1.00	6280.
33.	N + OH = NO + H	3.80 × 10 ¹³	0.00	0.

Note: forward rate coefficients (K_f) are of the form $k_f = A T^p \exp(-E_f^f_{RT})$, where the dimensions of A are molecm-sec-K, the units of E are cal/mole, T is absolute temperature, and B is the ideal gas constant.

EXAMPLE 2: H2 NON-PREMIXED TURBULENT FLAME(ARHENIUS APPROACH; OBIEGLO, GASS & POULIKAKOS, 2000)

- Axisymmetric H2-Air reacting flame flow
- Axisymmetric, Re=10'000; K-e model
- Comparisons with LDA Lab. data
- Standard EDC model
- Cantera library for material properties

Fig. 1. Scheme of the nozzle for the jet flame. The inner diameter is D = 3.75 mm.

EXAMPLE 2: H2 NON-PREMIXED TURBULENT FLAME (ARHENIUS APPROACH; OBIEGLO, GASS & POULIKAKOS, 2000)

EXAMPLE 3: PARTIALLY PREMIXED COMBUSTION

(EDC CLOSURE)

Sandia Flame D, Setup

- 2D axisymm.
- BMR (multiblock Grid)
- 55.292 cells; 3 blocks

EXAMPLE 3: PARTIALLY PREMIXED COMBUSTION (EDC CLOSURE)

Sandia Flame D, modelling & Results

- Methane-air jet flames
- Partialy premixed
- Eddy dissipation concept

EXAMPLE 3: PARTIALLY PREMIXED COMBUSTION (EDC CLOSURE)

EDC WITH TRANSAT

Figure: Radial profiles of Flame–D. EDC simulations at z/d = 3, z/d = 7.5, z/d = 15. (Top: Temperatures, Bottom: CO_2 mass fractions

EXAMPLE 3: PARTIALLY PREMIXED COMBUSTION (EDC CLOSURE)

EDC WITH TRANSAT

Figure: Radial profiles of Flame–D. EDC simulations at z/d = 30, z/d = 45, z/d = 60. (Top: Temperatures, Bottom: CO_2 mass fractions

